metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2-{[2-(2-Aminoethylamino)ethylimino]methyl}phenolato- $\kappa^4 O, N', N'', N'''$)copper(II) perchlorate

Moussa Dieng,^a Aliou Hamady Barry,^b Mohamed Gaye,^a* Abdou Salam Sall,^a Paulo Pérez-Lourido^c and Laura Valencia-Matarranz^c

^aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, ^bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and ^cDepartamento de Química Inorgánica, Facultade de Química, Universidad de Vigo, 36310 Vigo, Pontevedra, Spain

Correspondence e-mail: mlgayeastou@yahoo.fr

Received 13 April 2011; accepted 26 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.037; wR factor = 0.131; data-to-parameter ratio = 12.4.

The asymmetric unit of the title complex, [Cu(C₁₁H₁₆N₃O)]-ClO₄, consists of two Cu^{II} ions coordinated by Schiff base ligands and two perchlorate anions. The Schiff base molecules are linked to the Cu^{II} atoms via three N atoms and one O atom, resulting in a square-planar geometry. Intermolecular hydrogen bonds involving the NH groups as donors and O atoms of the perchlorate anions as acceptors are observed.

Related literature

For related structures, see: Ambrosi et al. (2003); Jiang et al. (2009).

Experimental

Crystal data [Cu(C11H16N3O)]ClO4 $M_r = 369.26$

Triclinic, $P\overline{1}$ a = 10.371 (3) Å

b = 12.615 (3) Å c = 13.390 (3) Å $\alpha = 108.240 (4)^{\circ}$ $\beta = 105.568 (4)^{\circ}$ $\gamma = 108.154 (4)^{\circ}$ $V = 1445.2 (6) \text{ Å}^{3}$	Z = 4 Mo K α radiation $\mu = 1.72 \text{ mm}^{-1}$ T = 293 K $0.14 \times 0.12 \times 0.10 \text{ mm}$
 Data collection Enraf–Nonius CAD-4 diffractometer 9604 measured reflections 4979 independent reflections 4043 reflections with <i>I</i> > 2<i>σ</i>(<i>I</i>) 	$R_{int} = 0.024$ 2 standard reflections every 167 reflections intensity decay: none
Refinement $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.131$ S = 1.04	H atoms treated by a mixture of independent and constrained

$wR(F^2) = 0.131$	independent and constrained
S = 1.04	refinement
4979 reflections	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
403 parameters	$\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ Å}^{-3}$
6 restraints	

Table 1	
Selected bond lengths	(Å).

Cu1-O2	1.891 (3)	Cu2-O1	1.895 (3)
Cu1-N6	1.933 (4)	Cu2-N3	1.930 (3)
Cu1-N5	2.005 (4)	Cu2-N2	2.010 (4)
Cu1-N4	2.006 (4)	Cu2-N1	2.012 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O3P^{i}$	0.85 (2)	2.52 (3)	3.188 (5)	136 (4)
$N1 - H1 \cdots O3P$	0.85(2)	2.54 (3)	3.208 (5)	136 (4)
$N2-H2\cdots O9P^{ii}$	0.85(2)	2.30 (3)	3.069 (6)	151 (4)
$N2-H3\cdots O2$	0.86(2)	2.12 (2)	2.955 (5)	162 (4)
$N4-H4\cdots O8P$	0.86(2)	2.46 (3)	3.223 (7)	148 (3)
$N4-H5\cdots O1$	0.86(2)	2.24 (2)	3.084 (5)	168 (4)
$N5-H6\cdots O6P^{iii}$	0.84(2)	2.47 (4)	3.081 (5)	131 (4)
$N5-H6\cdots O4P$	0.84 (2)	2.51 (3)	3.195 (5)	139 (4)
	(1) · •		(**)	

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) -x + 1, -y + 2, -z + 1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No. 6314PS804).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2008).

References

Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Micheloni, M., Pontellini, R. & Rossi, P. (2003). Polyhedron, 22, 1135-1146.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Jiang, J., Chu, Z. & Huang, W. (2009). Inorg. Chim. Acta, 362, 2933–2936. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Acta Cryst. (2011). E67, m830-m831 [doi:10.1107/S1600536811020095]

(2-{[2-(2-Aminoethylamino)ethylimino]methyl}phenolato- $\kappa^4 O, N', N'', N'''$)copper(II) perchlorate

M. Dieng, A. H. Barry, M. Gaye, A. S. Sall, P. Pérez-Lourido and L. Valencia-Matarranz

Comment

The asymmetric unit of the title complex, $[C_{11}H_{16}N_3ClO_5Cu]_2$, consists of two Cu^{II} ions coordinated with Schiff base ligands and two perclorate anions. The Schiff base molecules are linked to the Cu^{II} atoms via three N atoms and one O atom. Each Shiff base ligand exhibits a square-planar geometry about the copper(II) ion. Intermolecular hydrogen bonds involving the NH groups as donors and O atoms as acceptors are observed. The Cu–O distances are 1.891 (3) and 1.895 (3) A° while the Cu–N are in the range 1.930 (3)- 2.011 (3) A°. These values are lower than those observed for the copper complex obtained from the ligand 4-chloro-6-hydroxymethyl-2-((3-aminopropylimino)methyl)phenol (Jiang *et al.*, 2009). The sum of the angles around the Cu1 atom is 359.56° and around Cu2 atom the sum is 360.3°. These facts indicate that there are very slight distortions from the square planar geometry around the Cu^{II} atom. In the two molecules the atoms around Cu are situated in the same plane (dihedral angles N2—Cu1—N1—C8 = 178.4 (3)°, N2—Cu1—N1—C8 = -178.4 (3)°, N5—Cu2—N4—C18 = 178.9 (4)° and O2—Cu2—N4—C19 = -177.4 (3)°). The structure of the complex is shown at Fig. 1. Intermolecular hydrogen bonding network is shown at Fig. 2.

Experimental

Diethylentriamine (1.0311 g, 10 mmol) and salicylaldehyde (2.4408 g, 20 mmol) were dissolved in 20 ml of ethanol with few drops of glacial acetic acid. The mixture was refluxed for 3 h. On cooling a yellow oil was isolated. In a round bottomed flask, copper perchlorate (0.5249, 2 mmol) dissolved in 10 ml of methanol was introduced. The resulting ligand (0.4145 g, 2 mmol) dissolved in 10 ml of methanol was added. Immediate color change was observed indicating instant formation of the complex. The mixture was stirred at room tempearture for two hours. The blue solution was filtered off and the filtrate was letf at room temperature. After one month, suitable blue crystals for X-ray analysis were obtained. Yield: 70%. Anal. Calc. for $[C_{11}H_{16}N_3ClO_5Cu]_2$ (%): C, 35.78; H, 4.37; N, 11.38. Found: C, 35.80; H, 4.35; N, 11.34. Selected IR data (cm⁻¹, KBr pellet): 3216, 1637, 1600, 1582, 1197, 764.

Refinement

The H atoms of the NH and NH₂ groups were located in the Fourier difference maps and refined with N—H distance restrained to 0.86 (2) A °. Others H atoms (of the CH₂ groups) were placed geometrically and refined with a riding model. $U_{iso}(H)$ for H was assigned as 1.2 U_{eq} of the parent C atoms.

Figures

Fig. 1. An *ORTEP* view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Molecular representation of the compound showing hydrogen bonds. The Perchlorate groups are omitted for clarity.

$(2-{[2-(2-Aminoethylamino)ethylimino]methyl}phenolato- \kappa^4O, N', N'', N''')copper(II) perchlorate$

Crystal data

[Cu(C ₁₁ H ₁₆ N ₃ O)]ClO ₄	Z = 4
$M_r = 369.26$	F(000) = 756
Triclinic, <i>P</i> T	$D_{\rm x} = 1.697 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.371 (3) Å	Cell parameters from 25 reflections
b = 12.615 (3) Å	$\theta = 11 - 15^{\circ}$
c = 13.390 (3) Å	$\mu = 1.72 \text{ mm}^{-1}$
$\alpha = 108.240 \ (4)^{\circ}$	T = 293 K
$\beta = 105.568 \ (4)^{\circ}$	Prism, blue
$\gamma = 108.154 \ (4)^{\circ}$	$0.14 \times 0.12 \times 0.10 \text{ mm}$
V = 1445.2 (6) Å ³	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.024$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.1^\circ, \ \theta_{\text{min}} = 1.8^\circ$
graphite	$h = -12 \rightarrow 12$
π scans	$k = -15 \rightarrow 15$
9604 measured reflections	$l = -15 \rightarrow 15$
4979 independent reflections	2 standard reflections every 167 reflections
4043 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.131$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0736P)^{2} + 1.8036P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4979 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
403 parameters	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.48017 (5)	0.82083 (4)	0.17536 (4)	0.03778 (16)
Cu2	0.69669 (5)	0.67765 (4)	0.40785 (4)	0.03492 (16)
Cl1	0.71789 (11)	0.96716 (9)	0.47942 (8)	0.0404 (2)
C12	0.18182 (13)	0.66397 (10)	-0.12121 (9)	0.0502 (3)
01	0.4879 (3)	0.6029 (3)	0.3599 (2)	0.0397 (6)
O2	0.5561 (3)	0.7179 (3)	0.0997 (2)	0.0421 (7)
O3P	0.8668 (4)	1.0066 (3)	0.5557 (3)	0.0625 (9)
O4P	0.6998 (4)	1.0681 (3)	0.4620 (3)	0.0635 (9)
O5P	0.6818 (4)	0.8682 (3)	0.3721 (3)	0.0620 (9)
O6P	0.6191 (5)	0.9214 (4)	0.5281 (4)	0.0790 (12)
O7P	0.2836 (5)	0.7790 (4)	-0.0273 (3)	0.0841 (13)
O8P	0.1176 (7)	0.5817 (4)	-0.0787 (5)	0.1186 (19)
O9P	0.2632 (8)	0.6193 (5)	-0.1779 (5)	0.129 (2)
O10P	0.0789 (7)	0.6826 (7)	-0.1963 (6)	0.158 (3)
N1	0.9185 (4)	0.7628 (3)	0.4620 (3)	0.0377 (7)
N2	0.6939 (4)	0.6190 (3)	0.2490 (3)	0.0390 (8)
N3	0.7429 (4)	0.7226 (3)	0.5692 (3)	0.0377 (7)
N4	0.3318 (4)	0.6842 (3)	0.1875 (3)	0.0418 (8)
N5	0.3875 (4)	0.9249 (3)	0.2452 (3)	0.0435 (8)
N6	0.5927 (4)	0.9644 (3)	0.1598 (3)	0.0438 (8)
C1	0.8468 (5)	0.6837 (4)	0.2588 (4)	0.0447 (10)
H1A	0.8627	0.7639	0.2594	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H1B	0.8605	0.6354	0.1936	0.054*
C2	0.9551 (5)	0.6995 (4)	0.3685 (4)	0.0463 (10)
H2A	0.9466	0.6195	0.3651	0.056*
H2B	1.0558	0.7486	0.3811	0.056*
C3	0.9887 (5)	0.7633 (5)	0.5735 (4)	0.0487 (11)
H3A	1.0910	0.8255	0.6129	0.058*
H3B	0.9879	0.6832	0.5618	0.058*
C4	0.9022 (5)	0.7919 (5)	0.6450 (4)	0.0490 (11)
H4A	0.9244	0.7675	0.7071	0.059*
H4B	0.9293	0.8800	0.6782	0.059*
C5	0.6476 (5)	0.6967 (4)	0.6119 (3)	0.0384 (9)
H5A	0.6836	0.7164	0.6900	0.046*
C6	0.4894 (4)	0.6394 (4)	0.5491 (3)	0.0354 (8)
C7	0.4020 (5)	0.6276 (4)	0.6131 (4)	0.0468 (10)
H7	0.4484	0.6527	0.6917	0.056*
C8	0.2508 (5)	0.5801 (4)	0.5621 (4)	0.0499 (11)
H8	0.1954	0.5762	0.6062	0.060*
С9	0.1807 (5)	0.5377 (4)	0.4439 (4)	0.0475 (11)
H9	0.0778	0.5045	0.4086	0.057*
C10	0.2621 (4)	0.5444 (4)	0.3793 (4)	0.0395 (9)
H10	0.2125	0.5132	0.3000	0.047*
C11	0.4171 (4)	0.5967 (3)	0.4277 (4)	0.0356 (8)
C12	0.2444 (5)	0.7334 (5)	0.2428 (4)	0.0508 (11)
H12A	0.2914	0.7627	0.3254	0.061*
H12B	0.1454	0.6686	0.2147	0.061*
C13	0.2352 (5)	0.8390 (4)	0.2150 (4)	0.0468 (10)
H13A	0.1754	0.8082	0.1338	0.056*
H13B	0.1905	0.8804	0.2591	0.056*
C14	0.4064 (6)	1.0212 (4)	0.2021 (4)	0.0516(11)
H14A	0.3897	1.0875	0.2487	0.062*
H14B	0.3349	0.9858	0.1233	0.062*
C15	0.5611 (6)	1.0710 (4)	0.2080 (4)	0.0539 (12)
H15A	0.5690	1.1190	0.1639	0.065*
H15B	0.6315	1.1243	0.2871	0.065*
C16	0.6800 (5)	0.9681 (4)	0.1085 (4)	0.0508 (11)
H16	0.7260	1.0420	0.1046	0.061*
C17	0.7135 (5)	0.8673 (4)	0.0559 (4)	0.0458 (10)
C18	0.8147 (6)	0.8893 (5)	0.0056 (5)	0.0629 (14)
H18	0.8590	0.9681	0.0102	0.076*
C19	0.8513 (7)	0.8000 (6)	-0.0501 (5)	0.0713 (16)
H19	0.9198	0.8177	-0.0823	0.086*
C20	0.7843 (7)	0.6823 (6)	-0.0578 (5)	0.0708 (15)
H20	0.8079	0.6202	-0.0953	0.085*
C21	0.6831 (6)	0.6569 (5)	-0.0100(4)	0.0576 (12)
H21	0.6374	0.5768	-0.0180	0.069*
C22	0.6463 (5)	0.7482 (4)	0.0505 (3)	0.0425 (10)
H1	0.939 (5)	0.836 (2)	0.468 (4)	0.037 (11)*
H2	0.670 (5)	0.542 (2)	0.220 (4)	0.051 (14)*
H3	0.636 (4)	0.635 (4)	0.203 (3)	0.035 (11)*
			(-)	

H4	0.275 (4)	0.629 (3)	0.1181 (19)	0.025 (10)*
Н5	0.370 (4)	0.651 (4)	0.227 (3)	0.039 (12)*
H6	0.435 (4)	0.960 (4)	0.3166 (18)	0.040 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0470 (3)	0.0347 (3)	0.0394 (3)	0.0218 (2)	0.0218 (2)	0.0175 (2)
Cu2	0.0324 (3)	0.0383 (3)	0.0361 (3)	0.0163 (2)	0.0152 (2)	0.0164 (2)
Cl1	0.0419 (5)	0.0336 (5)	0.0399 (5)	0.0184 (4)	0.0122 (4)	0.0107 (4)
Cl2	0.0618 (7)	0.0415 (6)	0.0332 (5)	0.0193 (5)	0.0111 (5)	0.0091 (4)
01	0.0364 (15)	0.0482 (16)	0.0372 (14)	0.0171 (13)	0.0167 (12)	0.0215 (13)
02	0.0559 (17)	0.0396 (15)	0.0442 (16)	0.0262 (14)	0.0294 (14)	0.0210 (13)
O3P	0.0487 (19)	0.0512 (19)	0.065 (2)	0.0210 (16)	0.0049 (16)	0.0148 (16)
O4P	0.062 (2)	0.0436 (18)	0.069 (2)	0.0254 (16)	0.0070 (17)	0.0193 (16)
O5P	0.081 (2)	0.054 (2)	0.0428 (17)	0.0379 (18)	0.0181 (17)	0.0074 (15)
O6P	0.089 (3)	0.073 (2)	0.091 (3)	0.032 (2)	0.063 (2)	0.035 (2)
O7P	0.111 (3)	0.057 (2)	0.045 (2)	0.019 (2)	0.012 (2)	0.0098 (17)
O8P	0.147 (5)	0.072 (3)	0.105 (4)	0.005 (3)	0.058 (4)	0.037 (3)
O9P	0.226 (7)	0.106 (4)	0.137 (5)	0.110 (4)	0.134 (5)	0.063 (4)
O10P	0.103 (4)	0.177 (6)	0.149 (6)	0.051 (4)	-0.024 (4)	0.089 (5)
N1	0.0353 (18)	0.0349 (19)	0.0467 (19)	0.0161 (15)	0.0168 (15)	0.0212 (16)
N2	0.043 (2)	0.0359 (19)	0.0425 (19)	0.0210 (16)	0.0195 (16)	0.0169 (16)
N3	0.0327 (17)	0.0438 (19)	0.0343 (17)	0.0160 (15)	0.0100 (14)	0.0178 (15)
N4	0.046 (2)	0.042 (2)	0.042 (2)	0.0199 (17)	0.0227 (17)	0.0184 (17)
N5	0.052 (2)	0.044 (2)	0.0327 (18)	0.0267 (17)	0.0125 (16)	0.0124 (16)
N6	0.051 (2)	0.0343 (18)	0.0431 (19)	0.0203 (16)	0.0135 (17)	0.0169 (16)
C1	0.049 (2)	0.043 (2)	0.051 (2)	0.023 (2)	0.028 (2)	0.021 (2)
C2	0.035 (2)	0.044 (2)	0.062 (3)	0.0191 (19)	0.023 (2)	0.020 (2)
C3	0.034 (2)	0.056 (3)	0.057 (3)	0.020 (2)	0.014 (2)	0.029 (2)
C4	0.042 (2)	0.058 (3)	0.041 (2)	0.019 (2)	0.0086 (19)	0.024 (2)
C5	0.045 (2)	0.036 (2)	0.036 (2)	0.0192 (18)	0.0165 (18)	0.0162 (17)
C6	0.042 (2)	0.034 (2)	0.042 (2)	0.0214 (17)	0.0226 (18)	0.0206 (17)
C7	0.066 (3)	0.036 (2)	0.052 (3)	0.027 (2)	0.037 (2)	0.021 (2)
C8	0.052 (3)	0.052 (3)	0.070 (3)	0.030 (2)	0.040 (2)	0.035 (2)
C9	0.041 (2)	0.046 (2)	0.074 (3)	0.024 (2)	0.032 (2)	0.036 (2)
C10	0.035 (2)	0.041 (2)	0.049 (2)	0.0165 (18)	0.0154 (18)	0.0275 (19)
C11	0.039 (2)	0.032 (2)	0.046 (2)	0.0195 (17)	0.0226 (18)	0.0204 (17)
C12	0.053 (3)	0.058 (3)	0.051 (3)	0.029 (2)	0.030 (2)	0.022 (2)
C13	0.047 (2)	0.053 (3)	0.042 (2)	0.029 (2)	0.019 (2)	0.015 (2)
C14	0.069 (3)	0.048 (3)	0.047 (2)	0.037 (2)	0.021 (2)	0.021 (2)
C15	0.068 (3)	0.040 (2)	0.053 (3)	0.026 (2)	0.018 (2)	0.021 (2)
C16	0.055 (3)	0.047 (3)	0.048 (2)	0.014 (2)	0.017 (2)	0.028 (2)
C17	0.045 (2)	0.052 (3)	0.043 (2)	0.020 (2)	0.021 (2)	0.024 (2)
C18	0.060 (3)	0.070 (3)	0.067 (3)	0.021 (3)	0.032 (3)	0.041 (3)
C19	0.071 (4)	0.096 (4)	0.063 (3)	0.036 (3)	0.050 (3)	0.036 (3)
C20	0.076 (4)	0.079 (4)	0.058 (3)	0.034 (3)	0.039 (3)	0.019 (3)
C21	0.071 (3)	0.054 (3)	0.054 (3)	0.028 (2)	0.037 (3)	0.018 (2)

C22	0.047 (2)	0.047 (2)	0.034 (2)	0.022 (2)	0.0151 (18)	0.0166 (18)	
Geometric parat	Geometric parameters (Å, °)						
Cu1—O2		1.891 (3)	(С3—С4		1.516 (6)	
Cu1—N6		1.933 (4)	(С3—НЗА		0.9700	
Cu1—N5		2.005 (4)	(С3—Н3В		0.9700	
Cu1—N4		2.006 (4)	(C4—H4A		0.9700	
Cu2—O1		1.895 (3)	(C4—H4B		0.9700	
Cu2—N3		1.930 (3)	(С5—С6		1.436 (6)	
Cu2—N2		2.010 (4)	(C5—H5A		0.9300	
Cu2—N1		2.012 (3)	(С6—С7		1.410 (6)	
Cl1—O4P		1.422 (3)	(C6—C11		1.429 (6)	
Cl1—O3P		1.425 (3)	(С7—С8		1.367 (7)	
Cl1—O6P		1.426 (4)	(С7—Н7		0.9300	
Cl1—O5P		1.435 (3)	(С8—С9		1.390 (7)	
Cl2—O10P		1.391 (5)	(С8—Н8		0.9300	
Cl2—O9P		1.406 (5)	(C9—C10		1.364 (6)	
Cl2—O8P		1.410 (5)	(С9—Н9		0.9300	
Cl2—O7P		1.411 (4)	(C10—C11		1.398 (6)	
O1—C11		1.317 (5)	(С10—Н10		0.9300	
O2—C22		1.311 (5)	(C12—C13		1.514 (6)	
N1—C3		1.472 (6)	(C12—H12A		0.9700	
N1—C2		1.472 (5)	(С12—Н12В		0.9700	
N1—H1		0.851 (19)	(С13—Н13А		0.9700	
N2—C1		1.487 (5)	(С13—Н13В		0.9700	
N2—H2		0.849 (19)	(C14—C15		1.499 (7)	
N2—H3		0.859 (19)	(C14—H14A		0.9700	
N3—C5		1.276 (5)	(C14—H14B		0.9700	
N3—C4		1.472 (5)	(C15—H15A		0.9700	
N4—C12		1.476 (5)	(С15—Н15В		0.9700	
N4—H4		0.861 (19)	(C16—C17		1.442 (7)	
N4—H5		0.860 (19)	(С16—Н16		0.9300	
N5-C13		1.466 (6)	(C17—C18		1.396 (7)	
N5-C14		1.483 (6)	(C17—C22		1.414 (6)	
N5—H6		0.836 (19)	(C18—C19		1.365 (8)	
N6—C16		1.273 (6)	(C18—H18		0.9300	
N6—C15		1.476 (6)	(C19—C20		1.386 (8)	
C1—C2		1.500 (6)	(С19—Н19		0.9300	
C1—H1A		0.9700	(C20—C21		1.375 (7)	
C1—H1B		0.9700	(С20—Н20		0.9300	
C2—H2A		0.9700	(C21—C22		1.408 (6)	
C2—H2B		0.9700	(С21—Н21		0.9300	
O2—Cu1—N6		95.35 (14)]	НЗА—СЗ—НЗВ		108.4	
O2—Cu1—N5		176.01 (13)]	N3—C4—C3		108.1 (4)	
N6—Cu1—N5		85.05 (16)]	N3—C4—H4A		110.1	
O2—Cu1—N4		94.12 (14)	(С3—С4—Н4А		110.1	
N6—Cu1—N4		168.50 (15)]	N3—C4—H4B		110.1	
N5—Cu1—N4		85.06 (15)	(С3—С4—Н4В		110.1	

O1—Cu2—N3	95.44 (13)	H4A—C4—H4B	108.4
O1—Cu2—N2	96.03 (13)	N3—C5—C6	125.3 (4)
N3—Cu2—N2	164.80 (14)	N3—C5—H5A	117.3
O1—Cu2—N1	177.95 (13)	С6—С5—Н5А	117.3
N3—Cu2—N1	83.63 (14)	C7—C6—C11	118.9 (4)
N2—Cu2—N1	85.21 (14)	C7—C6—C5	117.1 (4)
O4P—C11—O3P	110.2 (2)	C11—C6—C5	124.0 (4)
O4PCl1O6P	108.8 (3)	C8—C7—C6	121.5 (4)
O3P—Cl1—O6P	109.3 (3)	С8—С7—Н7	119.2
O4P—Cl1—O5P	110.8 (2)	С6—С7—Н7	119.2
O3P—C11—O5P	109.6 (2)	С7—С8—С9	119.4 (4)
O6P—C11—O5P	108.0 (2)	С7—С8—Н8	120.3
O10P—Cl2—O9P	108.8 (4)	С9—С8—Н8	120.3
O10P—Cl2—O8P	113.7 (4)	C10—C9—C8	120.3 (4)
O9P—Cl2—O8P	109.6 (4)	С10—С9—Н9	119.8
O10P—Cl2—O7P	108.9 (4)	С8—С9—Н9	119.8
O9P—Cl2—O7P	107.0 (4)	C9—C10—C11	122.5 (4)
O8PCl2O7P	108.7 (3)	C9—C10—H10	118.8
C11—O1—Cu2	126.0 (3)	C11-C10-H10	118.8
C22—O2—Cu1	125.5 (3)	O1—C11—C10	118.9 (4)
C3—N1—C2	116.0 (3)	O1—C11—C6	123.9 (3)
C3—N1—Cu2	108.7 (3)	C10-C11-C6	117.2 (4)
C2—N1—Cu2	106.7 (3)	N4—C12—C13	108.9 (4)
C3—N1—H1	111 (3)	N4—C12—H12A	109.9
C2—N1—H1	107 (3)	C13—C12—H12A	109.9
Cu2—N1—H1	106 (3)	N4—C12—H12B	109.9
C1—N2—Cu2	108.0 (3)	C13—C12—H12B	109.9
C1—N2—H2	107 (3)	H12A—C12—H12B	108.3
Cu2—N2—H2	111 (3)	N5-C13-C12	106.9 (4)
C1—N2—H3	108 (3)	N5—C13—H13A	110.3
Cu2—N2—H3	113 (3)	С12—С13—Н13А	110.3
H2—N2—H3	110 (4)	N5—C13—H13B	110.3
C5—N3—C4	119.9 (3)	С12—С13—Н13В	110.3
C5—N3—Cu2	125.1 (3)	H13A—C13—H13B	108.6
C4—N3—Cu2	115.0 (3)	N5-C14-C15	108.8 (4)
C12—N4—Cu1	109.1 (3)	N5-C14-H14A	109.9
C12—N4—H4	110 (3)	C15-C14-H14A	109.9
Cu1—N4—H4	106 (3)	N5-C14-H14B	109.9
C12—N4—H5	108 (3)	C15-C14-H14B	109.9
Cu1—N4—H5	114 (3)	H14A—C14—H14B	108.3
H4—N4—H5	110 (4)	N6-C15-C14	107.6 (4)
C13—N5—C14	117.2 (4)	N6—C15—H15A	110.2
C13—N5—Cu1	106.1 (3)	C14—C15—H15A	110.2
C14—N5—Cu1	106.3 (3)	N6—C15—H15B	110.2
C13—N5—H6	110 (3)	C14—C15—H15B	110.2
C14—N5—H6	109 (3)	H15A—C15—H15B	108.5
Cu1—N5—H6	108 (3)	N6—C16—C17	125.4 (4)
C16—N6—C15	121.7 (4)	N6—C16—H16	117.3
C16—N6—Cu1	125.1 (3)	С17—С16—Н16	117.3

C15—N6—Cu1	113.0 (3)	C18—C17—C22	119.3 (4)
N2-C1-C2	108.4 (3)	C18—C17—C16	117.3 (4)
N2—C1—H1A	110.0	C22—C17—C16	123.4 (4)
C2-C1-H1A	110.0	C19—C18—C17	122.7 (5)
N2—C1—H1B	110.0	C19—C18—H18	118.7
C2—C1—H1B	110.0	C17—C18—H18	118.7
H1A—C1—H1B	108.4	C18—C19—C20	118.6 (5)
N1-C2-C1	106.9 (3)	C18—C19—H19	120.7
N1—C2—H2A	110.3	C20—C19—H19	120.7
C1—C2—H2A	110.3	C21—C20—C19	120.3 (5)
N1—C2—H2B	110.3	C21—C20—H20	119.9
C1—C2—H2B	110.3	C19—C20—H20	119.9
H2A—C2—H2B	108.6	C20—C21—C22	122.3 (5)
N1-C3-C4	108.3 (3)	C20—C21—H21	118.9
N1—C3—H3A	110.0	C22—C21—H21	118.9
С4—С3—НЗА	110.0	O2—C22—C21	118.2 (4)
N1—C3—H3B	110.0	O2—C22—C17	125.0 (4)
C4—C3—H3B	110.0	C21—C22—C17	116.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1···O3P ⁱ	0.85 (2)	2.52 (3)	3.188 (5)	136 (4)
N1—H1···O3P	0.85 (2)	2.54 (3)	3.208 (5)	136 (4)
N2—H2···O9P ⁱⁱ	0.85 (2)	2.30 (3)	3.069 (6)	151 (4)
N2—H3…O2	0.86 (2)	2.12 (2)	2.955 (5)	162 (4)
N4—H4···O8P	0.86 (2)	2.46 (3)	3.223 (7)	148 (3)
N4—H5…O1	0.86 (2)	2.24 (2)	3.084 (5)	168 (4)
N5—H6···O6P ⁱⁱⁱ	0.84 (2)	2.47 (4)	3.081 (5)	131 (4)
N5—H6…O4P	0.84 (2)	2.51 (3)	3.195 (5)	139 (4)
~				

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+1, -*y*+2, -*z*+1.

Fig. 1

